為什麼要學習Python?
Python是一種非常流行的程式語言,用於各種領域。學習Python的原因包括其簡單易學的語法,跨平台的特性,以及在資料科學和機器學習領域的廣泛應用。此外,Python擁有大量的資源和社區支持。學習Python對於資料科學家來說是必備技能之一,能夠快速開發和執行數據科學項目,並能夠與廣泛的工具和庫集成。
開始上課Python是一種非常流行的程式語言,用於各種領域。學習Python的原因包括其簡單易學的語法,跨平台的特性,以及在資料科學和機器學習領域的廣泛應用。此外,Python擁有大量的資源和社區支持。學習Python對於資料科學家來說是必備技能之一,能夠快速開發和執行數據科學項目,並能夠與廣泛的工具和庫集成。
開始上課Colab是由Google提供的基於瀏覽器的Python環境,旨在為數據科學家和機器學習研究者提供便利。使用者可以在雲端一鍵執行Python程式碼,無需安裝任何軟體或配置硬體。Colab支援Python 2和Python 3,內建許多熱門的Python庫。同時,Colab也支援GPU和TPU加速,可以提高運算速度。操控Colab非常容易,只需登錄Google帳戶,即可使用Google Drive儲存和管理代碼和數據,還能創建 編輯和共享Colab筆記本。
開始上課以前在Python中進行資料分析可能會讓你不得不依賴Pandas,但當需要進行資料修改或新增時,Excel總是那個得心應手的選擇,對吧?現在有一個令人興奮的消息!微軟和Anaconda攜手合作,將Anaconda帶入Excel的世界中。這意味著,現在你可以在Excel的熟悉界面中,發揮Python的強大威力,進行資料分析和機器學習。不再需要繁瑣的資料匯出和匯入,一切都在一個地方搞定!🔗🔢
開始上課這篇文章介紹了如何使用OpenCv進行影像辨識,將台灣證券交易所買賣日報表上的五碼驗證碼分解成五個單一文字。這樣的分解可以讓後續的機器學習演算法更容易辨識圖像文字(OCR)。
開始上課這篇文章介紹了如何使用Spark進行機器學習。只要將資料整理成特徵和標籤的格式,就能夠使用MLlib提供的演算法進行快速分類。這樣的分類技術不僅能夠選出土豆,還能夠預測電信業客戶是否流失。然而,在進行分類之前,我們需要對資料進行整理,以使其符合分類演算法的要求。
開始上課Spark最近版本中收錄了R語言的SparkR,這讓R語言的資料分析能夠與Spark進行無縫整合。在RStudio下的安裝過程經過實測後發現,非常簡單且與使用RHadoop撰寫MapReduce非常相似。然而,研究後發現部分機器學習的功能仍需自行撰寫,無法直接呼叫MLlib,這是目前讓人最失望的部分。
開始上課使用selenium抓取驗證碼圖片並非難事,只需要先存取頁面快照,然後找到圖片位置,然後根據位置和大小,就能成功從頁面中擷取出驗證碼。接著,只需要將驗證碼交給機器學習引擎辨識,就能輕鬆讓電腦為我們自動訂票。可以參考這篇程式碼來實踐:<a href="https://github.com/ywchiu/largitdata/blob/master/code/Course_95.ipynb">https://github.com/ywchiu/largitdata/blob/master/code/Course_95.ipynb</a>
開始上課這篇文章介紹了使用機器學習中的類神經網路方法破解驗證碼的技術。為了建立模型,需要在Anaconda Python 3.6上安裝Opencv3,並使用Opencv3來切割出驗證碼的數字,然後建立分類模型以使機器可以自動辨識驗證碼。
開始上課這篇文章介紹了如何用Python scikit-learn中的類神經網路(MLPClassfier)來辨識驗證碼中的數字,以進一步讓爬蟲程式更容易破解驗證碼的阻擋。文中還提供了程式碼的GitHub連結,想要學習更多機器學習相關課程的讀者們,也可以參考提供的連結。
開始上課本文提及在建立完訓練模型後,我們需要將模型儲存成pickle檔,以方便系統再次讀取使用,進而破解驗證碼並進行爬蟲,以抓取公司及分公司的基本資料。同時提供相關程式碼與學習資源連結。
開始上課